April 2017 Digital Edition

Click Here

March 2017 Digital Edition

Click Here

Feb. 2017 Digital Edition

Click Here

January 2017 Digital Edition

Click Here

Nov/Dec 2016 Digital Edition

Click Here

Oct 2016 Digital Edition

Click Here

Technology Sectors

Market Sectors

Five things you need to know about using high-purity germanium detectors for homeland security

Gary W. Phillips

High-purity germanium (HPGe) detectors are the recognized gold standard for detection and identification of characteristic gamma rays from nuclear or radiological sources. No other detector comes close to matching their extremely high resolution and sensitivity. However, until recently, their use outside the laboratory has been limited. A number of challenges had to be overcome before they could be deployed routinely in the field. These included the need for cryogenic cooling, the size and weight of the portable HPGe systems, the need for rugged packaging for extreme environments and the need for expert interpretation of the data. 

      Today, rugged, low-power, lightweight and highly reliable HPGe systems are available off-the-shelf. Ruggedized mechanical cooling systems have eliminated the need for liquid nitrogen. Thanks to improvements in data processing hardware and software, the task of analysis has been transferred to the instrument. Built-in software, in most cases, can automatically analyze and interpret the data, without expert assistance, and can alert the operator if a threat exists.

      The following are five things you need to know about the use of HPGe detector systems for homeland security applications in the field:

( 1 )      This is not your father’s germanium detector

High purity germanium detectors (HPGe) are not just laboratory instruments anymore. Today, rugged self-contained HPGe detector systems can go anywhere in the field to search for and identify suspect sources, such as weapons-grade plutonium or radiological dispersal devices (dirty bombs.) A built-in computer automatically sorts the signals into a gamma-ray spectrum, analyzes it for known nuclides and displays the results. All this is now packaged into a small-held unit.

These units have been deployed in a variety of challenging environments, including desert and artic conditions. Reliable, low-power Stirling-cycle mechanical coolers are built into the units. This eliminates the need for liquid nitrogen (LN) and the associated logistical difficulties with providing LN for worldwide deployments. This also eliminates the safety hazards associated with handling LN.

 The units can operate on external AC or DC power to cool down the detector to operating temperature, while at the same time charging the batteries. The detector systems can then be unplugged from the external power source and operated independently for greater than three hours. They typically weigh between 7 and 12 kg, depending on detector size and optional neutron detectors. With the addition of two small three-pound batteries, which can be attached to a belt, the systems can now operate continuously in the field for more than 20 hours.  

Gone are the days when HPGe detectors were anchored to the laboratory by large liquid nitrogen (LN) dewars to provide cooling. Gone also are rack-mounted electronic modules to provide power and process the detector signals, and a separate computer to sort the signals into a spectrum and analyze the results. 

( 2 )      It’s not rocket science

      It doesn’t take a highly trained analyst to interpret the data in the field. Portable HPGe detector systems are designed for non-technical users. Built-in software can analyze the gamma-ray spectrum reliably and compare the results to a catalog of characteristic peak energies, in order to identify the nuclides in the source. Nuclides found are displayed on the screen and alarms can be set for specific sources. There is a single button to push for ID and a single button to search for special nuclear material (SNM.) Typically, a complete user training regimen can be conducted in one morning or afternoon.

( 3 )      Resolution matters

It is often said that “size matters.” However, it is really “energy resolution” that matters for source detection and identification.

Resolution matters for detection of weak gamma ray peaks above the natural gamma-ray background. Resolution also matters for reducing the probability of false alarms.   There are several gamma-rays characteristic of weapons-grade plutonium in the energy range from about 330 to 450 keV. However, other common sources also have gamma rays in this energy region and can result in false alarms when using low-resolution detectors. These include iodine-131, used for treating thyroid cancer, and barium-133, a common calibration source. The resolution of HPGe systems is needed to distinguish between these sources and special nuclear material (SNM), such as plutonium. 

In addition, resolution matters for detection of a weak source of interest in the presence of a much stronger source. Iodine and barium sources can be used to mask the plutonium gamma rays, when viewed with a low-resolution detector.  

( 4 )      HPGe systems can search for and identify weak sources 

      HPGe detectors can be used to search for specific gamma rays from SNM or from a source used in a radiological dispersal device (RDD) or “dirty bomb.” Shielding can reduce the signal from these sources, making them difficult to detect with a low-resolution detector. With an HPGe detector, it takes only a few counts above background to identify a peak from a source of interest, since the peak counts occur in one of two channels while the background is spread out over the entire spectrum.

      Polonium-210 is a highly radioactive alpha source, which allegedly was used to kill Russian dissident Alexander Litvinenko in London in 2006. It would be very dangerous if used in an RDD.

( 5 )      HPGe detectors are not too expensive, fragile or complicated for field use

      Commercial off-the-shelf (COTS) HPGe detectors are cost effective. They can greatly reduce false alarms, which otherwise would cost additional time and expense to investigate. Moreover, they can detect weak signals from dangerous radiological or nuclear devices which would be missed altogether by other detectors. The high resolution of HPGe detectors enables them to pull weak gamma-ray peaks out of the background. They can detect and identify threats that may be missed by low-resolution detectors due to deliberate shielding or masking of the source.

      COTS HPGe detectors are ruggedized for field use. They are designed to be low maintenance and have passed stringent vibration and drop tests. HPGe systems have now been widely deployed within various military organizations, customs and border patrol, first responders, etc., in the U.S. and abroad, and have proven extremely rugged. They are designed for push button operation by non-technical users after brief training sessions, which typically last less than a half day. They can be used in conjunction with lower-resolution portals as secondary inspection systems, to eliminate false alarms from the primary systems. They can also be used as stand-alone search systems for suspect sources.

      Portable HPGe detectors use built-in software to analyze the spectra, identify the sources and report the results. They require practically no routine maintenance. Periodically checking the energy calibration with a small check source takes only a few minutes. Newer HPGe-based systems can automatically stabilize the calibration, based on known peaks in the natural gamma-ray background. Attached to external power, they can be kept cooled, charged and ready to go when needed for critical search and identification missions.

Gary W. Phillips is Adjunct Professor at Georgetown University in Health Physics and Nuclear Nonproliferation. He can be reached at:

[email protected]



Recent Videos

HID Global is opening the door to a new era of security and convenience.  Powered by Seos technology, the HID Mobile Access solution delivers a more secure and convenient way to open doors and gates, access networks and services, and make cashless payments using phones and other mobile devices. ...
Mobile device forensics can make a difference in many investigations, but you need training that teaches you how to get the most out of your mobile forensics hardware and software, and certifies you to testify in court. Read this white paper to learn how to evaluate mobile forensics training...
PureTech Systems is a software company that develops and markets PureActiv, its geospatial analytics solution designed to protect critical perimeters and infrastructure.  Its patented video analytics leverage thermal cameras, radars and other perimeter sensors to detect, geo-locate, classify, and...
PureTech Systems is a technology leader in the use of geospatial video, focusing on perimeter security.  When combining geospatial capabilities with video analytics and PTZ camera control, managers of critical facilities can benefit by allowing the video management system to aid them in the process...